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ON THE IMAGE OF Λ-ADIC GALOIS REPRESENTATIONS

AMI FISCHMAN

Abstract. We explore the question of how big the image of a Galois representation at-
tached to a Λ-adic modular form with no complex multiplication is and show that for a
“generic” set of Λ-adic modular forms (normalized, ordinary eigenforms with no complex
multiplication), all but a density 0 subset have large image.

1. Introduction

F. Momose has proved that the image of a restricted l-adic Galois representation attached
to an appropriately generic (normalized, ordinary, no CM) modular form is full in the sense
that it contains the special linear group (SL2) for all but finitely many l [Mom81]. In
this paper, we generalize that result to the Λ-adic setting developed by Hida in [Hid86a],
[Hid86b], and [Hid86c]. We show that the image of the subgroup determined by the twists
of the form is full (Thm. 4.8) and further determine the exact image of the Galois group of
Q under the Λ-adic representation.

We then show that in some sense, of all generic Λ-adic Galois representations, all but a
density 0 subset have full image as in Thm. 4.8 (Thm. 5.5).

In order to obtain analogs of the classical results in the Λ-adic situation, we determine the
exact structure of the Λ-adic Hecke algebra and coefficient ring. We then lift the classical
results of Momose to the Λ-adic setting using a proposition of N. Boston from the appendix
to [MW86].

1.1. Layout. In section 2, we discuss the case of weight 2, and the results already known for
it. In particular, we quote the result of Momose which guarantees that the restricted l-adic
representation attached to a generic weight 2 modular form is full for all but a finite set of
primes l. Then in section 3, we lift the weight 2 modular form to a Λ-adic modular form
and prove that in fact the Λ-adic Hecke algebra is of the form of a power series ring over the
classical Hecke algebra. This allows us to compute the coefficient ring of the lifted form, Λ,
explicitly, and subsequently to set up the proposition of N. Boston. In section 4, we prove
that the restricted Λ-adic Galois representation is full, and in section 5 we show that for all
but a density 0 subset of generic modular forms, the attached representations are full.

1.2. Notation. Throughout, Am will denote the completion of A at m and A(m) will denote
the localization of A at m, for a ring A and a prime ideal m.

This work was done under the supervision of Professor Hida as part of my Ph.D. thesis at UCLA. I am
very grateful to Dr. Hida for all the time, patience, and energy he has devoted to my research and learning,
and for the knowledge he so unsparingly shared with me. I am also grateful to the math department at
UCLA for its support.
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We recall the following standard definitions and notation for an odd prime l. Let µn :={
ζ ∈ Q | ζn = 1

}
be the set of nth roots of unity. Define the Teichmüller character at l, ωl,

to be the first component of the canonical isomorphism

Z×
l

∼→ µl−1 ×
Γ︷ ︸︸ ︷

(1 + lZl)

and define 〈〉 : Z×
l → 1 + lZl via 〈x〉 := ωl(x)

−1x. Then x 7→ (ωl(x), 〈x〉) is the canonical
isomorphism above.

The cyclotomic character at l is defined by letting n approach ∞ in the following canonical
sequence:

Gal(Q/Q)
res→ Gal(Q(µln)/Q)

∼→ (Z/lnZ)×

to get the character

νl : Gal(Q/Q)
res→ Gal(Q(µl∞)/Q)

∼→ Z×
l

We define ι : Gal(Q/Q)
res→ Gal(Q(µl∞)/Q)

res→ Gal(Q∞/Q)
∼→ 1 + lZl

κ
↪→ Λ× := Zl[[X]]×

to be the canonical character (so ι is onto 1 + lZl, and κ maps (1 + l) 7→ (1 +X)). We note
that ι(σ) = κ(〈νl(σ)〉) by definition. In particular, for a prime q 6= l, ι(Frobq) = κ(〈q〉).

Most of these facts are summarized in the following diagram:

Gal(Q/Q) //

νl

))SSSSSSSSSSS

XY
ι

00aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Gal(Q(µl∞)/Q) // Gal(Q∞/Q)

Z×
l

∼ // µl−1 × (1 + lZl)
〈〉

// 1 + lZl
� � κ // Λ× = Zl[[X]]×

2. Weight 2 Situation

2.1. Notation. Throughout l will denote a (variable) prime number greater than 3. Let
f =

∑∞
n=1 a(n, f)qn ∈ S2(Γ0(N), ε) be a weight 2 newform without complex multiplication.

Fix an embedding Q ⊂ C once and for all. Let Ef := Q(a(n, f)|n ∈ N) be the subfield
of Q ⊂ C generated by the coefficients of f , and note that Ef is finite dimensional over Q
(since it is generated by eigenvalues of a finite dimensional algebra). Let Of := OEf

be the
integer ring of Ef , and Of,l := Of ⊗Z Zl be the completion at l (for each l). Similarly for
each l, complete Ef to Ef,l := Ef ⊗Q Ql.

Let ρf,l : G = GQ = Gal(Q/Q) → GL2(Of,l) ⊂ GL2(Ef,l) be the continuous, unramified
outside lN Galois representation attached to f such that Tr(ρf,l(Frobp)) = a(p, f) and
det(ρf,l(Frobp)) = ε(p)p for all p - lN , where Frobp is a Frobenius element at p. Note that
this determines ρf,l uniquely up to isomorphism as an Ef,l-representation, but not necessarily
as an Of,l-representation. This representation comes from the action of G on l-power division
points of an abelian variety over Q. For more information on the construction and properties
of ρf,l the reader should consult [Shi71].

For an automorphism γ ∈ Aut(Ef ), a Dirichlet character χ may exist such that

γ(a(p, f)) = χ(p)a(p, f)
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for all but finitely many p. If it exists, call this character χγ. Let Γf be the set of γ ∈ Aut(Ef )
for which there exists a χγ.

2.2. Known Results. Work of Momose and Ribet allows us to make the following defini-
tions with implicit claims:

(1) Set Hf := ∩γ∈Γf
kerχγ;

(2) Γf is an abelian subgroup of Aut(Ef );
(3) Set Ff := Ef

Γf to be the fixed subfield;
(4) The index [Ef : Ff ] is finite. Set n := [Ef : Ff ];
(5) Set Rf := OFf

to be the integer ring of the fixed subfield;
(6) Set Rf,l := Rf ⊗Z Zl to be the completion at l, for each prime l; and
(7) Set Af,l :=

{
x ∈ GL2(Rf,l)| det(x) ∈ Z×

l

}
.

These definitions come from [Rib85] and allow us to state [Rib85, Thm. 3.1]:

Theorem 2.1 (Momose). For all but finitely many primes l, ρf,l(Hf ) = Af,l, and in partic-
ular, ρf,l(Hf ) ⊃ SL2(Rf,l).

2.3. l-Ordinarity. We will be dealing with two similar, but not equivalent, notions of “ordi-
narity.” The first notion is for rational primes (say l ∈ Z) where we say that f is l-ordinary
if l - a(l, f). The second notion is for primes lying over l, say l. Then we say that f is
l-ordinary if l - a(l, f).

When do the two notions clash? Clearly if l | a(l, f) then l|a(l, f) for any prime l | l, so l-
ordinarity implies l-ordinarity. However, it is possible that l | a(l, f) (i.e. f is not l-ordinary)
and that l - a(l, f) (i.e. f is l-ordinary). We will see shortly that this will not be a problem
for us.

We recall the bound on the size of the coefficients of an eigenform of weight k: |a(l, f)| ≤
2l(k−1)/2, which in weight 2 gives: |a(l, f)| ≤ 2

√
l. This implies that f is l-ordinary if and

only if a(l, f) 6= 0 for l > 3 (since if it is non-zero, it is between 0 and 2
√
l < l in absolute

value and not l-divisible).
Serre shows that for a real number x, the number of primes l less than x not dividing the

level N such that a(l, f) = 0 is Pf,0(x) = O(x/(log(x)3/2−δ)) for any δ > 0 [Ser81, Thm. 15,
p.174]. Using the prime number theorem, one sees that the density of non-ordinary (rational)

primes is df := lim
x→∞

Pf,0(x)

x/log(x)
= 0, since δ can be taken to be less than a half. Thus the density

of ordinary primes must be 1. We summarize this as:

Proposition 2.2 (Serre). Any form f as above of weight 2 is l-ordinary for a set of primes
{l} of density 1.

For any form f as above, let Σf be the set of primes l for which f is l-ordinary and which
avoid the union of the following finite sets of primes:

(1) the finitely many primes excluded by Thm. 2.1;
(2) the primes dividing the discriminant of the reduced Hecke algebra

h2(Γ0(N), ε,Z)red

where

h2(Γ0(N), ε,Z) := Z[T (n) | n = 1 . . . ] ⊂ End(S2(Γ0(N), ε))
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(3) the primes dividing 30N .

Note that the last set of primes excludes all l such that l ≤ 2
√
l + 1, so in particular

excludes the possibility that l|(a(l, f)2 − ε(l)).
Then Serre’s result (Prop. 2.2) shows that Σf is a density 1 set of primes.
The reason we exclude the primes dividing the discriminant of the Hecke algebra is that

those might ramify in Of . Now, for a prime l ∈ Σf , we are guaranteed that there is an l lying
over l such that f is l-ordinary. This follows since if all of the primes lying over l divided
a(l, f), then so would l, because it is unramified. The notion of l-ordinarity will be the key
to lifting f to a Λ-adic eigenform F later on.

Lemma 2.3. For a prime l, l - disc(hred2 (Γ0(N), ε,Z)) implies that l doesn’t ramify in Of .

Proof. We have the map λ : h2(Γ0(N), ε,Z) → Of mapping a Hecke operator T (n) to the
eigenvalue of f at n. A prime l ramifying in Of must divide the discriminant of Im(λ), since
disc(Im(λ)) = disc(Of )(Of : Im(λ))2 by [FT93, (2.3), p.121]. Let l be such a prime. Then
the pre-image of the different of Im(λ) must contain l and thus l divides the discriminant of
h2(Γ0(N), ε,Z) which shows the lemma. �

Note that by excluding the primes dividing 30N , we exclude the primes dividing the
conductors of the χγ by [Mom81, Rmk. 1.6].

3. Machinery

3.1. Lifting the Eigenform. Throughout this section, fix f2 as in the previous section, a
prime l ∈ Σf2 , and an l | l for which f2 is l-ordinary. Then there is a unique l-ordinary
eigenform f ∈ S2(Γ0(N) ∩ Γ1(l), ε,Z) such that f and f2 have the same eigenvalues for all
T (p), p - Nl. We note that Of,l has Of,l (the completion of Of at l) as a direct summand
and we will be mostly concerned with Of,l in the sequel. Similarly, we let Rf,l be the corre-
sponding direct summand of the fixed subring. We use here (and elsewhere) the convention
that a comma-seperated list of subscripts is associative, so for instance Of,l = (Of )l is the
completion at l of Of .

Let Λ := Zl[[X]], L be its quotient field, and let L be an algebraic closure of L. From
[Hid89, Thms. 4.5 and 4.6] we have that there is a finite extension of L, call it K ⊂ L,
with integral closure I of Λ in K such that there is an I-adic normalized Hecke eigenform
F ∈ Sord(Nl∞, χ) that specializes to f at weight 2 of character χ, where χ := εω2

l . We use
here the notation Sord(Nl∞, χ) to denote the space of (ordinary) Λ-adic modular cusp forms
of outside level N with character χ (see [Hid93, Sec. 7.6] for definitions and examples). For
the proof of the existence of a Λ-adic lift the reader should refer to the proof of [Hid86c, Cor.
3.7].

Let F =
∑∞

n=1 a(n, F )(X)qn be the q-expansion of F .
We adapt here an argument of F. Gouvêa’s from [Gou92] to the weight 2 situation to show

that:

Theorem 3.1. The coefficient ring I is a power series ring in one variable. Specifically,
I ∼= Of,l⊗̂Zl

Zl[[X]] ∼= Of,l[[X]].
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To prove this theorem, we set up some notation. Because f and F are eigenforms for their
respective Hecke algebras, we can define maps

λf : h := h2(Γ0(N) ∩ Γ1(l), ε,Z) → Of

and

λF : h := hord(Nl∞, χ) → I

mapping a Hecke operator to its eigenvalue on f and F , respectively. Let mf := λ−1
f (l) be

the inverse image of l.

Lemma 3.2. mf is a maximal ideal of h2(Γ0(N) ∩ Γ1(l), ε,Z).

Proof. Since (l) ⊂ Of is a maximal ideal and Of/(l) is a finite field, we have that h2(Γ0(N)∩
Γ1(l), ε,Z)/mf is a finite ring. But mf is prime because xy ∈ mf implies λf (xy) =
λf (x)λf (y) ∈ (l) and (l) is prime, so λf (x) ∈ (l) or λf (y) ∈ (l). This means that h2(Γ0(N)∩
Γ1(l), ε,Z)/mf is a finite integral domain and this a finite field, so mf is maximal. �

Then mf is a maximal ideal of h and contains ker(λf ). We will see shortly that there is a
unique maximal ideal containing ker(λF ), and we will call it mF . Since the m’s contain the
kernels, λf factors through hmf

and λF factors through hmF
. When no confusion can arise,

we will write hm for hmf
and hm for hmF

.

Lemma 3.3. Extend the scalars of h to Zl by h′ := h⊗ZZl. Then m′ := mf⊗ZZl is the
unique maximal ideal of h′ which contains ker(λf ).

Proof. Since h′ is an algebra of finite rank over the local ring Zl, it is semi-local, and in
particular has only finitely many prime ideals. Write h′ =

∏
n⊂h′ h

′
n where the product ranges

over the maximal ideals of h′. Then note that in general, Spec(A⊕B) = Spec(A)tSpec(B)
(see, for instance, [Sha94, p. 12, Example 1]), so a prime ideal in the product must only
actually show up in one of the components, proving the lemma. �

Since h is already semi-local, the same proof yields:

Corollary 3.4. There is a unique maximal ideal mF containing ker(λF ).

Claim 3.5. mf does not contain primes dividing the discriminant of

h2(Γ0(N), ε,Z)red

Proof. Note that mf ∩Z is a maximal ideal of Z, so mf ∩Z = (q) for some rational prime q.
This shows that mf can contain only one rational prime. But by definition l ∈ mf , so the
claim follows. �

Lemma 3.6. For l - N , k ≥ 2, and m ⊂ h2(Γ0(N), ε,Z) the maximal ideal associated to
the primitive form f2, the completion h2(Γ0(N), ε,Z)m of the Hecke algebra is an unramified
discrete valuation ring if m doesn’t contain a prime dividing the discriminant of the reduced
part of the Hecke algebra.

Proof. For simplicity of notation, let h := h2(Γ0(N), ε,Z) and let K be its total fraction
ring, and regard K as a finite dimensional algebra over Q. Then let U ⊂ Kred be the integral
closure of Z in Kred and hred = Z[T (n) | n = 1, · · · ]red ⊂ U . Note that Q(T (n)) = K, so



6 AMI FISCHMAN

hred is a lattice in U and (U : hred) is finite. Further, if q - (U : hred) then Uq = hredq .

Now Kred is a commutative semi-simple finite-dimensional algebra over Q, so we can write
Kred = K1 × · · · ×Kr for some r, with each Ki a number field, and U = U1 × · · · ×Ur, with
each Ui an order in a number field. Then we have that hredq

∼= U1,q × · · · × Ur,q, and each
component is a discrete valuation ring.

Since the discriminant of hred is disc(hred) = disc(U)(U : hred)2 ([FT93, (2.3) on p.121]),
the assumption on m implies that it contains no primes dividing (U : hred). Specifically, let q
be a rational prime in m and obtain hredm = (hredq )m is a completion at one of the components
of U1,q × · · · × Ur,q, and so a discrete valuation ring. Since the q we chose is in fact outside

disc(hred), it does not divide disc(U) and so each Ui,q is unramified, so hredm is unramified.
Since f is primitive, hm is reduced ([Hid00, Prop. 3.23]) and the lemma is shown. �

Lemma 3.7. If a(l, f) 6≡ ±
√
ε(l) mod m (which is always the case if l - N and f2 is of

level N) then h2(Γ0(N) ∩ Γ1(l), ε,Z)m ∼= h2(Γ0(N), ε,Z)m, and the former is an unramified
discrete valuation ring.

Proof. For the proof of this lemma we refer the reader to [Hid00, p. 106]. �

Proposition 3.8. hm ∼= hm⊗̂Zl
Zl[[X]]. In particular, we have

AutΛ(hm) ∼= AutZl
(hm)

Proof. From [Hid86c, Cor. 3.2], we have that hm/P2hm ∼= hm. Since hm is an unramified
discrete valuation ring over Zl, hm is a regular local ring of dimension 2 with a regular
sequence (P2, l). Now, hm/mF

∼= (hm/P2)/(l) ∼= hm/(l) ∼= F, and hm is unramified over Zl,
so we get hm ∼= W (F) ↪→ hm (by the universal properties of Witt vectors). Then together
with the map given by the diamond action Zl[[X]] → hm we get a map hm⊗̂Zl

Zl[[X]] → hm
which induces an isomorphism on residue fields and maps the regular sequence (P2, l) for
hm⊗̂Zl

Zl[[X]] into a regular sequence for hm and is thus an isomorphism. �

In order to finish the proof of Thm. 3.1, it suffices to show that the local Hecke algebras
are isomorphic to the coefficient rings:

Lemma 3.9. We can identify the local Hecke algebras with coefficient rings as: hm ∼= Of,l

and hm ∼= I.

Proof. By the definition of mf , for any b ∈ h \m, λf (b) 6= l and more generally, λf (b) ∈ O×
f,l.

This allows us to define a map h(m) → Of,l by mapping

a

b
7→ λf (a)

λf (b)

which is now well-defined and a homomorphism. By the proof of lemma 3.6 we know that this
map is surjective because λf maps onto Z[a(n, f)] and l (the prime at which we are localizing
and then completing) is outside the index of (Of : Z[a(n, f)]). Taking the completion of the

left-hand-side gives us a surjection λ̃ : hm → Of,l of discrete valuation rings. Furthermore
hm is of dimension 1 because h is a finite rank Z-module, h and Z have the same dimension,
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and localizing and completing doesn’t affect the dimension. Of,l is also of dimension 1, so
we have a surjection of discrete valuation rings of equal dimension, hence an isomorphism.

Similarly, the map hm → I is surjective, and both are finite rank Λ-modules, so they have
the same dimension (2). But both are integral domains, so there must be no kernel and the
rings are isomorphic. �

Proof of Thm. 3.1. Given the results above, the theorem follows trivially by noting that
I ∼= hm ∼= hm⊗̂Zl

Zl[[X]] ∼= Of,l⊗̂Zl
Zl[[X]] ∼= Of,l[[X]]. �

For each k ≥ 2 set Pk := ((1 +X)− (1 + l)k) to be the prime ideal of “weight k” in I.

3.2. Setting up Notation. We now define ΓF and HF , similarly to the weight 2 analogues
Γf , Hf . Let

ΓF := {γ ∈ Aut(K) | γ(l) = l and ∃ a Dirichlet character χγ such that

γ(a(p, F )) = χγ(p)a(p, F ) for all but finitely many p}
Γ′f := {γ ∈ Γf | γ(l) = l}
RF := IΓF

HF := ∩γ∈ΓF
ker(χγ)

Further, as we will see shortly, more important than Γf for us will be Γ′f .
We will show that in fact as far as the fixed rings RF and Rf,l go, there is no new

information in the Λ-adic setting over the weight 2 setting: RF mod P2
∼= Rf,l. To prove

this we record the following lemmas:

Lemma 3.10. Recall that we defined h′ = h⊗ZZl. Then let hord be the l-ordinary part of
h′, i.e. the product of local rings of h′ in which the image of T (l) is a unit. Then the set of
local rings of hord is in bijection with the set of local rings of h.

Proof. For brevity in the proof we use h to denote hord. Write the decompositions as h =∏s
i=1 hmi

and h =
∏r

j=1 hmj
. Clearly the map h → h modulo the prime ideal of weight 2 is

surjective, and each local component of h gets mapped onto a local component of h, so the
only thing to show is that no two local components of h get mapped to the same component
of h. Let ei : h→ hmi

be the canonical projections, and note that the {ei} form a complete
set of orthogonal idempotents. Then by Hensel’s lemma (for instance [Eis95, Cor. 7.5 on
p.187]), we can lift this set of idempotents to {ei} : h → h, and h =

∏r
i=1 eih. Then the

lemma will follow if each eih is local. Suppose n1 6= n2 ⊂ eih are both maximal ideals. Then
we may decompose eih = R1 × R2, and both Rj’s are Λ-algebras. Since eih is semi-local,
P2eih is contained in the Jacobson radical of eih, and so by Nakayama’s lemma neither of
the factors in eih = eih/P2eih = R1/P2R1 × R2/P2R2 is trivial, contradicting the fact that
eih = hmi

is local. �

Recall that AutΛ(hm) ∼= AutZl
(hm) from Prop. 3.8. If γ ∈ AutZl

(hm) then we will denote
by γ̃ ∈ AutΛ(hm) the isomorphic image of γ.
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Lemma 3.11. Let γ ∈ Γf ⊂ AutZl
(hm) and let γ̃ ∈ AutΛ(hm) be the isomorphic automor-

phism. Then the following diagram commutes for P = P2:

Of,l[[X]] ∼= I ∼= hm

γ̃

��

mod P// Of,l
∼= hm

γ

��
Of,l[[X]] ∼= I ∼= hm

mod P// Of,l
∼= hm

Proof. Note that for P = (X) the diagram obviously commutes. Now consider t := 1 +X −
(1 + l)2 ∈ Of,l[[X]]. Clearly Of,l[[X]] ∼= Of,l[[t]], and substituting Of,l[[t]] for Of,l[[X]] = hm
in the diagram shows that it does indeed commute for P = (t) = P2, since the difference
between X and t is 1− (1 + l)2 ∈ Zl and thus fixed by both γ and γ̃. �

Now we make precise the notion that there are no twists in the Λ-adic setting that were
not present in weight 2:

Proposition 3.12. The Λ-adic twists are those weight 2 twists that fix l. More precisely,

ΓF ∼= Γ′f ⊂ Γf

Proof. We know that
ΓF ⊂ AutΛ(I) ∼= AutZl

(Of,l) ⊃ Γ′f
so the proposition follows if we can show that the (fixed) isomorphism between the auto-
morphism groups maps each Γ into the other.

Let γ ∈ Γ′f , and let γ̃ ∈ AutΛ(I) be its isomorphic image. Then to show that γ̃ ∈ ΓF
it suffices to show that there is a Dirichlet character that is compatible with it. By lemma
(3.11), γ̃F mod P2

.
= f⊗χγ, where the

.
= symbol signifies that all but finitely many of

the prime-index Fourier coefficients on both sides agree. But F⊗χγ mod P2
.
= f⊗χγ as

well. Since eigenforms that agree on all but finitely many prime-index coefficients are equal,
F⊗χγ mod P2

.
= γ̃F mod P2. But then the uniqueness of the Λ-adic lift yields that F⊗χγ

.
=

γ̃F , so χγ̃ = χγ, and γ̃ ∈ ΓF . So Γ′f ↪→ ΓF .
Conversely, let γ̃ ∈ ΓF , and γ ∈ AutZl

(Of,l) be its isomorphic image. Then

f⊗χγ̃ = F⊗χγ̃ mod P2
.
= γ̃F mod P2 = γ(F mod P2) = γf

and γ ∈ Γ′f , so ΓF ↪→ Γ′f . �

The last proposition gives us an injection ϕ : ΓF ↪→ Γf , so we expect the corresponding
Galois groups to have the opposite relationship:

Proposition 3.13. Under the above assumptions, Hf ⊂ HF .

Proof. Let g ∈ Hf =
⋂
γ∈Γf

ker(χγ). Then to prove the proposition, it suffices to show that

for any γ′ ∈ ΓF , χ′γ is trivial on g. This is equivalent to saying that γ′(a(p, F )) = a(p, F ) for
almost all p. g ∈ Hf means that γ′(a(p, F )) mod P2 = ϕ(γ′)(a(p, f)) = a(p, f) for almost all

p. So γ′(a(p,F ))
a(p,F )

− 1 ∈ P2 for almost all p. But χγ′(p) is a finite order character, so γ′(a(p,F ))
a(p,F )

is

an element of finite order in 1 + P2, and thus must be 1 for almost all p. �

Now we are ready to prove:
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Theorem 3.14. RF mod P2
∼= Rf,l

Proof. Given the previous results, this follows immediately:

(RF mod P2) =
(
IΓF mod P2

) ∼= (
Of,l[[X]]ΓF mod P2

) ∼= O
Γ′f
f,l = O

Γf

f,l = Rf,l

Note that we are abusing notation slightly here, where Γf doesn’t act on Of,l (an element of

Γf might permute the components of Of,l). Instead we take O
Γf

f,l to mean that subset of Of,l

which is fixed by Γf when embedded in Of,l. �

3.3. A Proposition of N. Boston. In the appendix to [MW86], N. Boston gives a criterion
for lifting the property of being full from a residual representation to the original one. We
suspend for this section our notation from above and use Boston’s.

If I is an ideal of a ring A, define Γ(I) := ker(SLn(A) → SLn(A/I)) (n will be clear from
the context). Also, for any group D, let Z(D) denote the center of D.

Call an element T ∈ GLn(W ) a transvection if Td = d for all d ∈ D for some hyperplane
D, and for all x ∈ V = W n, T (x) = x+ dx, for some dx ∈ D.

Let R be a complete, Noetherian, local ring, with maximal ideal m, and residue character-
istic p ≥ 5. We further assume that R/m is finite, that R is regular and of Krull dimension
2, and that m = (p, t). Suppose p - n. Let I1, . . . , Id be minimal ideals of R/m2 that generate
m/m2, where d := dimR/m(m/m2).

We use the following proposition:

Proposition 3.15. [MW86, Cor. in appendix] Let D be a closed subgroup of SLn(R) pro-
jecting onto SLn(R/m), such that for 1 ≤ i ≤ d, there exists xi ∈ Γ(Ii) \ Z(SLn(R/m

2))
normalizing the image of D in SLn(R/m

2). Then D = SLn(R).

Then a slightly modified form of Boston’s result is:

Proposition 3.16 (Boston). Let ρ : G→ GL2(R) be a continuous representation, inducing
ρ : G→ GL2(R/m). Let L ⊂ G be a subgroup. Suppose ρ is full. Then if:

(1) ρ(L) ⊂ {( 1 ∗
0 ∗ )};

(2) There exists a matrix of the form
(

1 ∗
0 (1+p)−1(1+t)

)
in ρ(L); and

(3) for each b ∈ F×
p ⊂ (R/m)×, there exists a matrix of the form ( 1 ∗

0 b ) ∈ ρ(L)

then ρ is full.

Proof. The proof here basically follows the one given in the appendix to [MW86], with
the exception that we make it more explicit here, and use the condition 2 above instead
of Boston’s condition that there exists a matrix of the form

(
1 ∗
0 (1+t)

)
in ρ(L). Also, we

use the more general setting of the groups L ⊂ G instead of Boston’s specific use of the
inertia group at p: Ip ⊂ Gal(Q/Q). Let F := Fpr ∼= R/m be the residue field of R. Let
D := ρ(G) ∩ SL2(R) and D2 := D mod m2 ⊂ SL2(R/m

2) be its projection. Then we take
as the ideals for Prop. 3.15 above J1 := (p,m2)/m2 ⊂ R/m2 and J2 := (t,m2)/m2 ⊂ R/m2.
These obviously generate m/m2 and are minimal in R/m2.

If we can find elements xi ∈ Γ(Ji)\Z(SL2(R/m
2)) for i := 1, 2 that normalize D2, we will

be done by Prop. 3.15.

Claim 3.17. Γ(J1) ⊂ D2
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Proof. Let 1 + u ∈ D2 be a lift of a non-scalar transvection to D2 ⊂ SL2(R/m
2) from

SL2(R/m) (possible since p ≥ 5 and D surjects onto SL2(R/m)). Let x1 := (1 + u)p =
1 + pu ∈ D2. Note that x1 mod J1 = 1, so that x1 ∈ D2 ∩ Γ(J1). But Γ(J1) is minimal as
an SL2(R/m)-module (since J1 is) so D2 ∩ Γ(J1) = Γ(J1), i.e. Γ(J1) ⊂ D2. So the claim is
done �

This gives us the x1 we were looking for (being in D2 guarantees normalizing it). So we
only need to find an x2 now:

By the second hypothesis, there exists at least one matrix of the form
(

1 r
0 (1+p)−1(1+t)

)
in

ρ(L). Two cases arise:

(1) one of these r’s satisfies r ∈ m. Then choose a, b ∈ R so that r = pa+ tb and consider
the matrix

A′ := (1 + t)−1/2
(

1 pa+tb
0 (1+p)−1(1+t)

)(
1 −pa(1+p)
0 1+p

)
= (1 + t)−1/2

(
1 tb(1+p)
0 1+t

)
=

(
(1+t)−1/2 tb(1+p)

0 (1+t)1/2

)
Note that A′ has determinant 1 and mod t is the identity matrix (so A′ ∈ Γ(J2)),
and non-scalar (so non-central in SL2(R/m

2)). But A′ is just a product of a matrix
in ρ(L) mod m2 and a matrix in Γ(J1) ⊂ D2 with a scalar, so it certainly normalizes
D2, and we have our desired x2 := A′, so the proof of the proposition is done in this
case.

(2) None of the r’s that arise in this manner are inside m. Thus we get a matrix ( 1 a
0 1 ) ∈

ρ(L) such that a 6= 0 (r ≡ a mod m). By assumption, p ≥ 5, so we can choose
n ∈ {2, . . . , p − 2} such that when viewed as an element of Fp ⊂ R/m, n is a unit
and n−1 6= −1. Let c := n−1 + 1 6= 0 (c ∈ Fp). Then by the third assumption of the
proposition, there exists s ∈ R/m such that ( 1 s

0 c ) ∈ ρ(L). Then (letting L′ denote
the commutator of L):

ρ(L′) 3 (1/c)( 1 na
0 1 )( 1 s

0 c )(
1 −na
0 1 )( c −s0 1 )

= (1/c)( 1 s+nac
0 c )( c −s−na0 1 )

=
(

1 s−s+(c−1)na
0 1

)
= ( 1 a

0 1 ) =: B

Now we consider what B might lift to: det(ρ(L′)) = {1}, so by the first hypothesis,
B must be the reduction of some B = ( 1 r′

0 1 ) ∈ ρ(L′) such that r′ ≡ a mod m. In
particular, we get that(

1 r−r′
0 (1+p)−1(1+t)

)
=

(
1 r
0 (1+p)−1(1+t)

)
( 1 r′

0 1 )
−1 ∈ ρ(L)

and r − r′ ∈ m. This is a contradiction to the assumption of this case, so the proof
of the proposition is done.

�

Having set up this machinery, we are ready to lift the weight 2 results to the Λ-adic setting.
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4. Λ-adic Situation

4.1. Lifting the Representation Fullness. Let ρ := ρF : GQ → GL2(I) be the Galois
representation attached to F from section 3.1. Let ρF be the reduction ρ mod m. Then we
set ρk := ρF mod Pk for each weight k to be the weight k specialization of ρ. Note that this
ρ2 coincides with the ρ2,l from section 2.

Proposition 4.1. Up to conjugation ρ(HF ) ⊂ GL2(RF )

Outline of Proof. By the Cebotarev density theorem, it is in enough to show that for any
Frobq ∈ HF , ρ(Frobq) ∈ GL2(RF ). From the properties of ρ, we see that tr(ρ(Frobq)) =
a(q, F ) and Frobq ∈ HF implies that χγ(q) = 1 for all γ ∈ ΓF so tr(ρ(Frobq)) ∈ RF . Using
Wiles’ theory of pseudo-representations (for instance, [Hid00, Prop. 2.16]), there exists a
representation π : HF → GL2(RF ) whose trace agrees with that of ρ|HF

. But (ρ mod m)|HF

is irreducible, so using a result of Carayol and Serre ([Hid00, Prop. 2.13]) we see that ρ|HF

and π are conjugate, and the proposition follows. �

Hereafter we restrict our attention to the image of H?. Thus we let ρ′f := ρf |Hf
and

ρ′F = ρF |HF
. In this section we let ρ := ρ′F to simplify notation where no confusion can arise.

Note also that because we have shown that Hf ⊂ HF , the image of ρ mod P2 will contain
the image of ρ′f .

In order to apply Boston’s proposition to our situation we record the following observa-
tions:

Lemma 4.2. Specializing to the weight 2 representation and then reducing mod (l) is equiv-
alent to reducing the I-adic representation mod m.

Note that the former is what corollary 2.1 gives us, and the latter is what Prop. 3.16
requires.

Proof. This is trivial by noting that the following diagram commutes:

HF

ρ //

ρ
##GGGGGGGGGGGGG

GL2(RF )
(1+X) 7→(1+l)2

mod P2

//

mod m

��

GL2(Rf,l)

mod (l)
yyrrrrrrrrrrrrrr

GL2(Flr)

�

Combining lemma 4.2 with corollary 2.1 we get:

Lemma 4.3. ρ is full: Im(ρ) ⊃ SL2(Flr).

Thus, to apply Prop. 3.16, we only need to verify the three technical conditions of Prop.
3.16. We make the following substitutions for the proposition (where Il is the inertia at l in
Gal(Q/Q)): L = Il∩HF , p = l, R = I, m = (l, X), and R/m = Flr . We will let J := Il∩HF .

Lemma 4.4. The first condition of Prop. 3.16 is satisfied: ρ(J) ⊂ {( 1 ∗
0 ∗ )}
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Proof. The definition of ρF being l-ordinary is that ρF |Dl
∼=

(
δ ∗
0 ψ

)
where δ is unramified at

l (i.e., δ |Il= 1). So ρF |Il∼=
(

1 ∗
0 ψ

)
for some character ψ. An I-adic representation is always

ordinary at the prime over which I is defined, so we are done. �

In order to verify the other two criteria for Prop. 3.16, we make the following observation:

Lemma 4.5. J ⊂ Gal(Q/Q) maps onto

Gal(Q/Q)/Gal(Q/Q(µl∞)) ∼= Gal(Q(µl∞)/Q)

Call this latter Galois group L.

Proof. As noted in section 2.3, l - cond(χγ), so in particular, l - ord(χγ), and thus

Gal(Q/Q)/ ker(χγ)

is prime-to-l (contains no non-trivial homomorphic image of Z/lZ). Fix for the moment γ.
Let K := ker(χγ). Then K ′ := K/Gal(Q/Q(µl∞)) ⊂ L must be pro-l because L is, so L/K ′

is pro-l. But L/K ′ ∼= Gal(Q/Q)/K which is prime-to-l as shown above, so L/K ′ must be
trivial, i.e. K ′ = L. Varying γ now, we see that HF/Gal(Q/Q(µl∞)) must also be equal to
L. Thus the lemma follows since Il surjects onto L.

�

Lemma 4.6. There exists a matrix of the form
(

1 ∗
0 (1+l)−1(1+X)

)
in ρ(J)

Proof. The defining properties of ρ as an I-adic representation are laid out in [Hid86a, Thm.
2.1 and following remarks]. In particular, det(ρ) |Il= χν−1

l ι. As shown above, J surjects
onto L, so ι (which factors through L) must have a surjective image on J ⊂ Gal(Q/Q), so
that ι(J) = 1 + lZl ↪→ Λ. For the same reason, νl(J) = Z×

l .
Let σ ∈ J ⊂ Gal(Q/Q). Let aσ := ωl(νl(σ)) ∈ (Z/lZ)×, bσ := 〈νl(σ)〉 ∈ 1 + lZl, and

s ∈ Zl such that bσ = (1 + l)s. Then

det(ρF (σ)) = χ(σ)νl(σ)−1ι(σ) = χ(σ)νl(σ)−1κ(〈νl(σ)〉) = χ(σ)b−1
σ a−1

σ κ(bσ)

= χ(σ)(1 + l)−sa−1
σ (1 +X)s = ε(σ)ω2

l (σ)(1 + l)−sa−1
σ (1 +X)s

= ε(σ)(1 + l)−saσ(1 +X)s

By the surjectivity of νl and ι on J it follows that we can choose an element σ ∈ J to hit any
given aσ and any s ∈ Zl (independently). Let M := cond(ε), and notice that by [Mom81,
Rmk. 1.6], M |N . Note that since l - N , Q(µl∞) and Q(µM) are linearly disjoint inside
Q(µl∞ , µM) ⊂ Q, we can choose a σ ∈ Gal(Q/Q) to yield any given s ∈ Zl, aσ ∈ (Z/lZ)×

and keeping ε(σ) = 1. So we can choose σ ∈ J so that s = 1 and ε(σ) = aσ = 1, yielding
the desired element of J . �

Lemma 4.7. For each b ∈ F×
l ⊂ (R/m)×, there exists a matrix of the form ( 1 ∗

0 b ) in ρ(J)

Proof. Using the proof of the previous lemma, one notes that the choice of aσ is independent
of the choice of s, so one may choose σ ∈ J so that s = 0 and χ(σ)aσ hits any desired
b ∈ ρ(J). The lemma follows. �

Putting lemmas 4.3, 4.4, 4.6, and 4.7 all together with Prop. 3.16, we obtain:



ON THE IMAGE OF Λ-ADIC GALOIS REPRESENTATIONS 13

Theorem 4.8. The restricted Galois representation attached to F is full, i.e. ρF (HF ) ⊃
SL2(RF ).

4.2. The Exact Image of HF . We now know that SL2(RF ) ⊂ ρF (HF ) ⊂ GL2(RF ), and
are interested in finding out just where between the two matrix groups the image of HF

under ρF lies.
We record here a simple lemma for use later:

Lemma 4.9. If

SL2(R) ⊂ B ⊂ GL2(R)

is an inclusion of groups and

det(B) = A×

for some ring A, then

B = {X ∈ GL2(R) | det(X) ∈ A×}

As shown in the proof of lemma 4.6,

det(ρF (σ)) = χ(σ)νl(σ)−1ι(σ) = ε(σ)(1 + l)−saσ(1 +X)s

and the σ ∈ J = Il ∩HF ⊂ Gal(Q/Q) can be chosen to produce any (independently) chosen
ε(σ) ∈ Of,l, aσ ∈ (Z/lZ)×, and s ∈ Zl.

Let

D :=
{
ca(1 + l)−s(1 +X)s ∈ Of,l[[X]] | cM = al = 1, s ∈ Zl

}
Then we get

Proposition 4.10. Recalling that M is the conductor of the weight 2 nebentype and l ∈ Σf

for the weight 2 specialization of F , we have:

det(ρF (HF )) = D ∼= µM × µl × Γ′

where

Γ′ :=
{
(1 + l)−s(1 +X)s | s ∈ Zl

} ∼= Γ ⊂ Zl[[X]]

Imitating the weight 2 situation, we let AF := {x ∈ GL2(RF ) | det(x) ∈ D} and putting
the previous two lemmas together we get:

Corollary 4.11. The image of ρF (HF ) is as large as it can be given the determinant condi-
tion on it, i.e. ρF (HF ) = AF

This is the analogous result to (Momose’s) Thm. 2.1 in weight 2.
Recalling that we made arbitrary choices for f2 and for l ∈ Σf2 , we reformulate Thm. 4.8:

Corollary 4.12. Let f ∈ Snew2 (Γ0(N), ε) be a normalized eigenform without complex mul-
tiplication. Let Σ′

f be the set of ordinary primes for f (which is of density 1 by Prop. 2.2).
Let

Bf :=
{
Fl ∈ Sord(Nl∞, εω2

l ) | Fl specializes to f at weight 2 and l ∈ Σ′
f

}
Then the restricted Galois representations (in the sense of Thm. 4.8) attached to all but
finitely many of the elements of Bf are full.
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4.3. The Exact Image of G(Q). The computation of the exact image of G(Q) under ρF
follows almost word for word the argument of E. Papier as presented in [Rib85, Sec. 4]. We
include the proof here for the reader’s convenience.

The basic result of this section is that the difference between ρF (G) and ρF (HF ) is similar
to the difference between G and HF .

Lemma 4.13. Given γ ∈ ΓF , γρF and ρF⊗χγ are irreducible.

Proof. Suppose 0 6= V ( K2 is a non-trivial stable subspace under γρF (G). Note that
γρF (g)( xy ) = γ (ρF (g)γ−1( xy )), so if (γρF (G))V = V then γ(ρF (G)γ−1(V )) = V , and
ρF (G)γ−1(V ) = γ−1(V ), contradicting the irreducibility of ρF . The second assertion fol-
lows from the fact that tensoring two irreducible representations yields a third irreducible
representation. �

By the definition of χγ, it is clear that γρF and ρF⊗χγ have the same trace on Frobp
for any p - lN , so they have equal traces everywhere (by the Cebotarev density theorem).
The two representations must then be equivalent (being semi-simple and of equal trace). So
there is a matrix X ∈ GL2(K) such that XγρFX

−1 = γ⊗χγ. Considering the restriction to
HF , we see that X commutes with ρF (HF ) ⊃ SL2(RF ), so X is a scalar matrix and in fact
γρF (g) = ρF (g)χγ(g) for any g ∈ G.

Fix for the moment γ ∈ ΓF and g ∈ G. From the structure of I and RF which we have
already computed, it follows that I/mI and RF/mRF

are finite. Call these fields E and F
respectively. Then we note that ΓF ∼= Gal(E/F) and we can view γ as acting on elements
of E. Notice that being a root of unity, χγ(g) has the same order when projected into E, so
we view it as being both an element of I× and E×. Using Hilbert’s theorem 90 we can find

an element α(g) ∈ E such that γ
(
α(g)

)
/α(g) = χγ(g). I is unramified, so we can lift α(g)

to W (E) ↪→ I and call this lift α(g) ∈ I. Since E is finite, α(g) has finite order, so α(g) has
finite order, and α(g) ∈ I×. Note that the choice of g modulo HF is irrelevant, since χγ is
trivial on HF , so there are only finitely many α(g)’s.

Lemma 4.14. When χ is the nebentype of F , we have: γ(χ(g)) = χγ(g)χ(g)2

Proof. It suffices to prove the lemma for g = Frobp for all p - lN . Let p be a prime outside
lN . We consider the difference of Hecke operators: T (p)2−T (p2). Specifically, we apply the
two operators to F and take the p’th Fourier coefficient in the q-expansion of the resulting
eigenform:

a(p, F |T (p)) =a(p2, F ) + κ(〈p〉)χ(p)p−1

a(p2, F |T (p)) =a(p3, F ) + κ(〈p〉)χ(p)p−1a(p, F )

a(p, F |T (p)2) =a(p, (F |T (p))|T (p)) = a(p2, f |T (p)) + κ(〈p〉)χ(p)p−1

=a(p3, F ) + κ(〈p〉)χ(p)p−1a(p, F ) + κ(〈p〉)χ(p)p−1

a(p, F |T (p2)) =a(p3, F ) + κ(〈p〉)χ(p)p−1a(p, F )

So

a(p, F |T (p)2)− a(p, F |T (p2)) = κ(〈p〉)χ(p)p−1
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but F is a normalized eigenform so a(p, F )2 = a(p, F |T (p)2) and a(p2, F ) = a(p, F |T (p2))
yielding:

a(p, F )2 − a(p2, F ) = κ(〈p〉)χ(p)p−1

Applying γ to both sides and using the fundamental relationship between γ and χγ we get:

χγ(p)
2a(p, F )2 − χγ(p)

2a(p2, F ) =γ(κ(〈p〉)χ(p)p−1)

χγ(p)
2(a(p, F )2 − a(p2, F )) =γ(χ(p))κ(〈p〉)p−1

χγ(p)
2κ(〈p〉)χ(p)p−1 =γ(χ(p))κ(〈p〉)p−1

χγ(p)
2χ(p) =γ(χ(p))

and the lemma is proven. �

The preceding lemma tells us that γ(α(g)2

χ(g)
) = χγ(g)2α(g)2

χγ(g)2χ(g)
= α(g)2

χ(g)
, so α(g)2

χ(g)
∈ RF .

Re-write ρF (g) as

ρF (g) =

(
α(g) 0

0 χ(g)/α(g)

) {(
1 0
0 α(g)2/χ(g)

)
(α(g)−1ρF (g))

}
Then the product in curly brackets is in GL2(RF ) and has determinant in D, so is in AF .

This allows us to give a full characterization of the image of ρF :

Theorem 4.15. The image of ρF is the subgroup of GL2(I) generated by AF and the finite

set of matrices:

(
α(g) 0

0 χ(g)/α(g)

)
, where g ∈ G/HF .

5. Density Analysis

Now that we have the general machinery for lifting the fullness of a weight-2 Galois
representation, we wish to consider how often this machinery succeeds in telling us that an
I-adic representation is full.

To avoid repetition, call an ordinary, normalized eigenform which has no complex multi-
plication a generic form.

A naive approach to the analysis problem might be to decompose the set of all generic
I-adic forms into a disjoint union of lift families indexed over f ∈ S2(N,χ), which is a finite
set, and in each family only finitely many elements are non-full, so we would get that only
finitely many I-adic forms are not full. This reasoning is not correct, since some generic
I-adic forms don’t come from a weight-2 form of level N , but rather of level Nl, for some
prime l.

Instead, we note that an arbitrary generic I-adic form with level N outside its structure
prime (call it l) will be a lift of some generic form in S2(Nl, χω

a
l ). To put this observation

into a usable form, we make the following definitions:

Definition 5.1. Fix an integer N ≥ 1, a prime l - N , and a primitive character χ mod N .
Then define:

C(N, l, χ) :=
⊔

a∈{0...l−1}
g∈S2(Nl,χωa

l )
g is generic

Bg
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Further, varying l, define:

B(N,χ) :=
⋃
l-N

C(N, l, χ)

In this setup, each of the Bg’s is an infinite set (indexed by a density 1 set of primes), and
the Galois representations attached to all but finitely many of the elements of each Bg are
full. Moreover, the disjoint union is taken over a finite set. Thus we obtain:

Corollary 5.2. The Galois representations attached to all but finitely many of the elements
of C(N, l, χ) is full.

Now, to get a density theorem on the totality of B(N,χ), we need to define partial subsets
of B and C as follows: for a positive integer M let

B(M)
g := {F ∈ Bg | the structure prime of F < M}

and notice that this set is finite. Similarly, define

C(N, l, χ)(M) :=
⊔

a∈{0...l−1}
g∈S2(Nl,χωa

l )
g is generic

B(M)
g and B(N,χ)(M,M ′) :=

⋃
l-N
l<M ′

C(N, l, χ)(M)

and note that both of the above sets are finite.
For any of the preceding sets of modular forms (B, C, etc.), let the superscript + on the

letter denote the subset with full attached Galois representations. Then define:

d
(M)
N,l,χ :=

|C+(N, l, χ)(M)|
|C(N, l, χ)(M)|

Then corollary 5.2 implies:

Corollary 5.3. d
(M)
N,l,χ → 1 as M →∞.

Similarly, we may define

b
(M,M ′)
N,χ :=

|B+(N,χ)(M,M ′)|
|B(N,χ)(M,M ′)|

Then the previous corollary gives us:

Corollary 5.4. For any M ′ > 1

b
(∞,M ′)
N,χ := lim

M→∞
b
(M,M ′)
N,χ = 1

But the density of B+(N,χ) in B(N,χ) can be thought of precisely as b
(∞,∞)
N,χ , and by the

preceding corollary, we get:

Theorem 5.5. Keeping the outside level and character fixed, the set of generic I-adic forms
that have full attached Galois representations has density 1 in the set of all generic I-adic mo-
dular forms. Since this is true for any level and character, the same density statement holds
for all generic I-adic modular forms.
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Note that calculating “along the diagonal”, i.e. b
(X,X)
N,χ → 1 as X →∞ works just as well

by the above reasoning. Note also that this reasoning does not work if one attempts to

calculate b
(M,∞)
N,χ (since we do not have a good understanding of how d

(M)
N,l,χ behaves as l→∞

and M is fixed).
It should also be noted that the density results here are optimal in the sense that it

is not the case that only a finite number of generic I-adic modular forms have non-full
representations. Each irregular prime gives rise to a Λ-adic form whose representation is
reducible modulo the maximal ideal of the coefficient ring, so clearly it cannot be full.
Then the infinitude of irregular primes guarantees the infinitude of non-full representations
attached to generic I-adic modular forms.

Appendix A. Complex Multiplication

A.1. Specialization and CM. In this section we consider the relationship between a
Λ-adic modular form F and its specializations fk to weight k ≥ 2 with respect to com-
plex multiplication. In particular, we show (Prop. A.1) that in our setting, if F has no CM
then neither do the fk.

We say of a modular form f =
∑∞

n=0 anq
n (classical or Λ-adic) that it has complex multi-

plication (CM) if there exists a non-trivial Dirichlet character ϕ such that ϕ(p)ap = ap for a
density 1 set of primes p. If ϕ is defined mod D then ϕ(p)ap = ap holds for all p - DN when
f is a classical modular form of level N . Further, ϕ has to be a quadratic character. If the
kernel of ϕ in G = Gal(Q/Q) is a quadratic field then we say f has CM by this quadratic
field.

In this section, F ∈ SordI (Nl∞, χ) will denote a normalized Hecke eigenform with no CM,
and fk ∈ Sk(Nl, ε) will denote the specialization modulo the prime Pk of F (so χ = εωkl ).
Then fk is a normalized Hecke eigenform (though not a newform for level Nl if k > 2).

Proposition A.1. If F has no complex multiplication, then neither does fk for any k ≥ 2.

Proof. The key point is that the weight k is integral and greater than 1. Denote by the
subscript ·0 the primitive part of a Hecke algebra. Then we have h0/Pkh

0 ∼= h0,ord
k and so

the completions obey:

h0
Pk
/Pkh

0
Pk

∼= h0,ord
k ⊗Q ∼= U1 × · · · × Uv

for some fields Ui. But this means that

h0
Pk

∼= U1 × · · · × Uv
where the U ’s and the U ’s are in bijection (by the proof of Lemma 3.10). Each of the U ’s is
an irreducible component of the completed Hecke algebra.

Now suppose fk has CM for integral k ≥ 2. As proven by Hida in [Hid93, Sec. 7.6], a clas-
sical eigenform with CM gives rise to a Λ-adic CM eigenform, so there is a Λ-adic eigenform
F ′ that specializes to fk mod Pk. But the bijection between the Λ-adic and classical local
decompositions in the previous paragraph, this means that F ′ and F must belong to the
same Ui. But since F ′ has CM and F does not, they can’t be conjugate and thus can’t
belong to the same irreducible component of the completed Hecke algebra. �
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Note that further, in the “worst” possible case, F can only specialize to finitely many CM
classical forms:

Lemma A.2. fk does not have CM for all but finitely many values of k (none of which are
natural numbers greater than 1).

Proof. Fix a character θ and let aθ be the ideal generated by a(l, F ) − θ(l)a(l, F ) for all
primes l - DN (where D is the conductor of θ). Then for fk to have CM by θ is equivalent to
Pk ⊃ aθ. This implies that Pk is in V := Spec(Λ/aθ)(Qp), which is a proper closed subset of

Spec(Λ)(Qp). But the latter is 1-dimensional, so V must be 0-dimensional, i.e. only contain
finitely many points. Thus only finitely many Pk ∈ V , and only finitely many fk have CM
by θ.

On the other hand, the level of f⊗θ is the product of the level of f and the square of the
conductor of θ. So if f is to have CM by θ, θ’s conductor must be bounded, so only finitely
many such θ’s exist and the lemma is shown. �

A.2. Galois Representations. In this section we consider the effect CM has on the Galois
representations attached to a modular form. For f classical or Λ-adic , let ρf be the attached
l-adic or Λ-adic Galois representation.

Proposition A.3. f has CM by a character θ if and only if there is a non-trivial quadratic
character θ such that ρf ∼= ρf⊗θ. Writing F = Q(

√
−D) for the kernel of θ, f having CM

by θ and F is equivalent to ρf = Ind
Gal(Q/Q)

Gal(Q/F )
ψ for some character ψ.

Proof. Note that in the first assertion, the (⇐) direction is trivial (since the traces of ρf on
Frobenius elements are the a(p, f)).

The second assertion follows from the first by [DHI98, Lemma 3.2].
Notice that in [DHI98, Lemma 3.2] there is an apparent requirement that ρf be absolutely

irreducible. This is not necessary. The only place this is used is in determining that Cr is a
scalar matrix. But this can be obtained separately in the cases we deal with. In the classical
case, Ribet has shown that ρf is irreducible, which is enough to give that Cr is scalar (see for
instance [Hid00, p.111]). In the Λ-adic case, the situation is only slightly more complicated,
and comes from the classical case.

Letting Λ(P ) be the localization at a prime P , consider the diagram:

Gal(Q/Q)
ρ //

ρP &&MMMMMMMMMMM
GL2(Λ) //

mod P
��

GL2(Λ(P ))

mod P
��

GL2(Zp) // GL2(Qp)

Then ρP is irreducible from the classical case. Viewing Z(ρ) ⊂ M2(Λ(P )), we get a short

exact sequence: Λ(P )
// Z(ρ)

mod P // Q×
p

Tensoring with Qp over Λ(P ) yields Λ(P )⊗Λ(P )
Qp =

Qp → Z(ρ)⊗Λ(P )
Qp = Qp so by Nakayama’s lemma Z(ρ) = Λ(P ), and we get that the

centralizer of ρ is trivial again.
All that remains is to prove the direct direction of the first assertion. From the definition

of CM, tr(ρf )(Frobq) = tr(ρf⊗θ)(Frobq) for q - DN and Frobq the Frobenius element at q.
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Thus by Cebotarev’s density theorem, it follows that the traces of the two representations
must be equal. But then we can use the Brauer-Nesbitt theorem ([Hid00, Cor. 2.8]) to see
that ρf ∼= ρf⊗θ (equivalence is over the field of fractions). �

There is a simple corollary to Prop. A.3 which explicitly describes the shape of the image.
We include it here for completeness.

Corollary A.4. If f has CM by θ and F (F = Q(
√
−D) for D > 0 square-free), then

Im(ρf |Gal(Q/F )) ⊂ {( ∗ 0
0 ∗ )}. Further, ρ(Gal(Q/Q)) ⊂ {( ∗ 0

0 ∗ ), (
0 ∗
∗ 0 )}.

Proof. Consider the Galois tower: Q

H

G Q(
√
−D) = F

〈θ〉

Q

By Prop. A.3 ρf = Ind
Gal(Q/Q)

Gal(Q/F )
ψ for some character ψ of H. Writing the coset de-

composition of G/H as G = t[G:H]
i=1 Hσi we get a matrix representation of ρf as: ρf (g) =

Ind
Gal(Q/Q)

Gal(Q/F )
ψ(g) =

(
ψ(σigσ

−1
j )

)
[G:H]

(where ψ takes the value 0 on any argument not in H).

Concretely, we have that [G : H] = 2 and we take σ1 = id, σ2 ∈ G \H.
Consider now the image of Frobenius elements: let Frobq be a Frobenius element at q.

Then ρf (Frobq) =
(

θ(g) θ(gσ−1
2 )

θ(σ2g) θ(σ2gσ
−1
2 )

)
. If Frobq ∈ H, then θ(g) and θ(σ2gσ

−1
2 ) are non-zero,

and θ(gσ−1
2 ) = θ(σ2g) = 0. If Frobq ∈ G \H then θ(gσ−1

2 ) and θ(σ2g) are non-zero, and θ(g)
and θ(σ2gσ

−1
2 ) are zero. Since Frobenius elements generate the Galois group, this shows the

proposition. �
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